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AIlIIrad-A model representina a pipe buried in soil is studied in order to determine the dynamic response'
of sucb a system. The model considered is represented by an embedded cylindrical rod of radius IJ

subjected to time-harmonic Ioqitudinal forces actina periodically at intervals L in a1tematilll directions.
(Sucb a Ioadina pattern corresponds to the incoherent component of earthquake excitation.) The desree of
intendion betweeQ the rod and surrolllldiq medium as well as the amouat of dampiaa is establislled.

The rod and medium are assumed to behave as linear isotropic e1asIic materials and the interaction
between the medium and rod is assumed to occur tbroulh a shear force mechanism actilll at the interface.
The response is found to be expressible in terms of non-dimensional ratios of density, velocity of wave
propap!ion and an aspect ratio tJ/2L.

Results are presented in terms of dynamic amplification facton for various frequencies of the applied
forces. Peak response and resonant frequencies are determined and relions where radiation dampiq
oo:un are established. Apbysical interpretation of the results is given.

I. INTRODUCTION
The effect of earthquakes on lifeline systems has received considerable attention in recent
years [1,2]. One question of concern is the dynamic response of pipe systems buried in soil and
subjected to earthquakes. Among the most important facts to be established are the degree of
interaction between the pipe and surrounding soil and the amount of damping, if any, which
takes place in the system.

In this study, the response of an infinite train of pipe segments of radius a, interconnected at
intervals L, is considered. The periodic, longitudinal axial forces act at the joints at intervals L.
Since the relevant seismic input on the pipe is the incoherent component of the excitation[3],
these forces are taken in alternating directions. The model, therefore, is assumed to be an
infinite cylindrical rod embedded in an elastic medium and subjected to periodically spaced
forces as shown in Fig. 1. The rod as well as the medium are assumed to behave as linear
isotropic elastic materials and the interaction between the surrounding medium and rod is
assumed to occur through a shear force mechanism acting at the rod-medium interface which
prevents slip at this interface. Since the radial displacements of the pipe are known to be small,
for mathematical simplicity, the rod is assumed to be radially rigid. Such an assumption has
been used previously[4].
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It is seen that the response can be expressed in terms of several non-dirnensional ratios of
density and velocity of wave propagation. The response is also seen to depend strongly on the
aspect ratio a/2L of the rod. Responses to several such rods are obtained as a function of the
forcing frequency of the applied force.

In order to demonstrate specifically the dynamic effects, results are presented in terms of a
dynamic amplification factor (DAF) defined as the ratio of dynamic to corresponding static
response.

A subject of major interest is the determination of peak responses which occur at resonant
frequencies. Resonance occurs when the forcing frequency coincides with the frequency of an
excited wave of specific wave length in the system. (It is noted that corresponding to any given
wave length, propagation can occur only at certain discrete frequencies. Such frequency-wave
length relations are a result of the dispersive character of the system). Frequency ranges are
established where no radiation damping occurs and it is observed that in this range, the
response contains infinite DAF.

From the study of the analytic solution and observation of the numerical results obtained,
several general conclusions are established which govern the response of the rod-medium
system.

2. GENERAL FORMULATION AND SOLUTION

The model considered represents an infinite cylindrical rod of radius a, embedded in a
medium and which is subjected to dynamic concentrated forces F(l), a.cting in the longitudinal
z-direction at periodic intervals L as shown in Fig. 1. The forces are assumed to act
harmonically in time with frequency f.

The rod is represented by means of a solid cylindrical bar of cross-sectional area A with
modulus of elasticity Eand density p, whose motion in the longitudinal z-direction is denoted
by Up(z, t). Following the assumption of radial rigidity[4], the radial displacements are taken as
zero throughout the rod.

The surrounding medium is assumed to behave as a linear elastic material having density p
and defined by a shear modulus po and Poisson ratio v. For the axi-symmetric case considered
here, the medium can undergo time-dependent radial and axial displacements denoted by
Ur(r, z, t) and Uz(r, Z, t) respectively.

The interaction between the rod and surrounding medium is then due to an iteractive shear
force mechanism, acting along the cylindrical interface, which prevents slip between the rod
and the medium.

Denoting the harmonically applied periodic concentrated forces by means of periodically
spaced Dirac-delta functions c5p(z), the force F(t) is represented by

(1)

where w = 27Tf.
The governing equation of the rod is then written as:

(2)

where 'Trz(a, Z, t) represents the interactive shear stress at the interface.
With the assumptions stated above, together with the requirements on contmulty of

displacements at the rod-medium interface, the boundary conditions on the medium displace­
ments become

Ur(a, z, t) =0, Uz(a, z, t) = Up(z, t). (3a, b)

The dynamic displacements of the surrounding medium, r ~ a may be expressed in t~rms of
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outgoing wave expressions (which decay as r-+ oo) as follows{4]:

90S

(4)

(5)

where Ho(1} and HI(I) are Hankel functions of the first kind of order zero and one respectively,

and

In the above,

am =(2m -1)'1T1L,

h =wlcp, k =wlc"

[
2(1- /I) ]1/2c =['./p]1/2 and c = __ .J!:.

I IA'I p 1- 2/1 P

(6)

(7a, b)

(8a, b)

(9a, b)

are the propagation speeds in an elastic medium of outgoing S- and P-waves respectively.
Thus, the terms associated with the constants Am represent the P-waves, while the Bm terms
represent the propagation of the S-waves. The constants Am and Bm must then satisfy the
boundary conditions of eqn (3).

From the first of these

Furthermore, since U,(a, z) =0, the shear stress at the interface is given by

( t)
- aUz(a, z, t)

Tn a,z, -p. ar

Using the remaining boundary condition and substituting eqn (11) in eqn (2),

(10)

(11)

(12)

The periodic Dirac-delta function may now be represented in the region 0s Z s L by the
infinite series

2 ..
~p(z) =-L ~ cos amZ.

m-\
(13)

It is noted here in passing that the interval 0s zs L represents a half-Fourier interval and
hence the analysis of the infinite rod is given by the solution in a periodic interval 0s z S A with
A=2L being the total Fourier interval (see Fig. 2).

Noting that

dHo(\)(x) - H (\)( )
dx -- 1 X, (14)

substituting the expression for Uz and its appropriate derivatives from eqn (5) and using the
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representation of eqn (13) in eqn (12), we obtain, assuming a steady-state solution, the following
equation:

where

and

~ A {rE- 2 - 2]D ( 2J.L} 2Fo~~ m am - Pw zm a)-- 8m cos amz = AL ~ cos amz
m-\ a m=\

8m =aD~;(r) I =- hq~ (am
2 +k:2)H\(I)(h:,a).

r=a

(15)

(16a)

(16b)

By satisfying eqn (15) term by term, the constants Am are found, after some algebraic
manipulation, to be

(17a)

where

(17b)

and

In eqn (17),

c= [E/p]1/2

(17c)

(18)

represents the familiar propagation velocity of longitudinal waves in a free elastic rod.
Substituting finally eqns (17) in eqn (5) and using eqn (3b), the displacement Up(z, t) is

obtained; viz

(19)

At this point it is advantageous to express the solution in terms of non-dimensional
quantities and more specifically in terms of non-dimensional ratios relating the propaption
velocities of the P- and S-waves in the medium and the propagation velocity cof waves in the
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free bar. To this end, we define the following new non-dimensional variables:

." =al). where ). =2L

r =fA/e,

and

Rc =e"le" R, =e"le.

Also, let the ratio of the densities of medium to rod be

RD =pip.

907

(20)

(21)

(22a, b)

(23)

Using these new parameters, the expression for the longitudinal displacement Up of the bar
becomes

(24)

where now

(25)

in which

(26)

and

(27)

It is noted that the non-dimensional displacement given by eqn (24) is uniquely determined
by five quantities: r, ROo R" Rc and .".

In the above, terms containing p and s subscripts correspond to contributions from the P­
and S-waves respectively. Thus, it is observed that coupling of the two wave types occurs
through Alii given in eqn (25).

Certain limiting cases of the solution represented by eqn (24) are of particular interest.
For example, noting that

the solution degenerates to

lim -=0,
R,-oO A",

(28)

(29)

Similarly if RD =0 or if Rc ~oo while both RD and R, remain finite, eqn (29) is recovered
from eqn (24). The solution given by eqn (29) is recognized as the solution for a free infinite bar
with no interaction, i.e. as the uncoupled solution. In all three cases such a solution is expected
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since (a) Rv =0 implies a massless medium (b) R. =0 implies a medium of no rigidity and (c)
Rc ~oo (with R., Rv finite) also implies a medium of no shear rigidity since,

It is noted that for the response of the free bar, resonance occurs when

r = 2m - I, m = I, 2, 3...

i.e. when the fo.reing frequency I is given by

f=e/A, 3e/A, 5e1A, U/A ...

It is thus convenient to define

f = cIA

(30)

(3Ia)

(3Ib)

(32)

which is the fundamental frequency of vibrations of the uncoupled bar, or in terms of wave
propagation, the wave frequency for a longitudinal wave of wave length A propagating in the
z-direction.

The variable r can then be rewritten as

r=flf (33)

and thus represents the ratio of forcing frequency to natural frequency of the uncoupled free
bar. This interpretation will subsequently prove significant in understanding the results presen­
ted in the next section.

Upon taking the limit as f~O (or r~O) of eqn (24), the static solution, identical to that
obtained directly using Love strain functions [5], is recovered.

3. NUMERICAL RESULTS AND CONCLUSIONS

Numerical results are presented for the displacements of typical rods embedded in an elastic
medium with a Poisson ratio p = 0.25 and for which the density ratio RD =pip = 0.2. Results are
given for a range of propagation velocity ratios and for various aspect ratios 1/ =alA.

Significant results which demonstrate the dynamic effects on the displacements are best
presented in terms of the ratio of the dynamic response Uv to the equivalent static response Us,
as obtained in [5]. The responses are therefore given in terms of the dynamic amplification
factor

DAF =Uv(z =0)
Us(z =0)

(34)

where the displacements Uv(z =0) are evaluated from eqn (24). Calculations of this quantity,
using M = 15 terms were found to insure sufficient accuracy in all cases.

Four series of results, corresponding to values R. = 0.5, 1.0, 3.0 and 6.0, are presented in
Figs. 3-6 respectively.t For each series, the response for aspect ratios 1/ =alA =0.01, 0.02, 0.05
and 0.1 is found.

The responses are presented as a function of r =11f, for 0s; r s; 10, with the other
parameters held fixed. Analogously to the definition of f (as given in eqn 32), it is appropriate to

tThese values of R were used in an attempt to simulate the properties of jointed pipes. (Choosing low values of E to
represent the effect of the ftexible joints, yields low val~s. of l a~cording to eqn (18) and hence relativelr.larp values fo.~
R .) Asubsequent study, using a more refined model for JOinted plpes(61 has shown that the use of a low global modwus
Ecannot adequately represent the realistic conditions of relatively rigid pipes embedded in typical soils.
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define the equivalent wave frequency of the S- and P-waves propagating in the medium by

I, =c)A, I, =c,fA (35)

respectively. These frequencies are indicated in all figures presented below. It should be noted
that from their definitions, I, == fRI/'

In considering the results presented in these figures, we shall first concentrate, in particular,
on the inftuences of the aspect ratio and point out certain features which, as will be seen in the
discussion which follows, are explicable in terms of the existence or inexistence of radiation
damping which can occur in the system.

To this end, it is first noted from Fig. 3, with R. =0.50, that all displacements are finite,
although sharp finite peaks do occur. For 'JI =0.01 and 0.02, a sharp peak occurs at I=I" while
for greater values of 'JI( 'JI == 0.05 and 0.1) sharp but finite peaks occur at r=. nf, (n =1,3,5 ...) as
indicated along the abscissa. In general, since f is an intrinsic property of the rod, we may
conclude that with increasing values of 'JI, the rod properties tend to predominate while for
smaller 'JI the embedding medium is more effective. Moreover, the peak displacements are seen
to increase considerably with increasing values of 'JI. From both of these observations, we may
thus conclude that the interaction at the rod-medium interface is significantly weakened with
increasing values of 'JI, i.e. when L decreases. This effect is in accord with the results found for
the corresponding static case [5].

If Fig. 4, we observe a similar behavior for R. =1.0, (for which I, =1> and note again that
finite peaks occur at 1= nl, =nf (n =1,3,5 ...). These finite peaks are again seen to increase
with greater values of 'JI. In anticipation of the discussion below, we shall refer to these finite
peaks as "damped resonant" behavior.

From Fig. 5 with R. == 3.0, we note two types of response: for small values of 'JI('JI =0.01
and 0.02) abrupt changes of behavior occur at frequencies I == I" 3/,. However being finite, they
again describe a damped resonant behavior. For larger values of 'JI, ('JI =0.05 and 0.1) both finite
peaks and infinite responses, corresponding to true resonance, occur. Thus, e.g. in Fig. 5d, a
finite peak response occurs at 1- 1.83 f, while infinite peaks exist for certain discrete values of
111. The different kinds of response occuring here are analyzed and explained below.

In Fig. 6 with R. == 6.0, we again note a relatively smooth behavior except for damped
resonance for 'JI =0.01 and 'JI =0.02, which occurs at I =I" while for larger values of 'JI infinities
exist for discrete values of r.t

We now turn our attention to an analysis of the results, and in particular to an explanation
of the damped (finite) apd undamped (infinite) resonant responses.

It is first observed that infinite responses can only occur if a particular m term of the
denominator of eqn (24) vanishes. The vanishing of such a denominator establishes the
dispersion relation of the system, relating the frequency I to alA, i.e. the vanishing of this term
is equivalent to the frequency equation which determines the dispersion relations. In a previous
paper[7], it is shown that real roots of the frequency equation can only exist if c< en or in
terms of the parameters defined by eqns (22), the denominator can vanish (and therefore infinite
responses can exist) only if

R. [2(1- JI)]I12 R > 1
Re • 1-2J1 •. (36)

For JI == 0.25, we therefore observe that for R. < \1'3, no infinites can occur. The results
presented in Fip. 3 and 4, with R. == 0.5 and 1.0 respectively, correspond to this case; all peak
responses were indeed observed to be finite. On the other hand, in Fip. 5 and 6, R. is such that
infinite resonance can occur, since possible roots of the frequency equations can exist.
However, we note for example in Fig. 5d that the first peak at I -1.837 is finite while the

tFor typical buried pipelines (baviq material relatively stifer than the surroundiq medium and containiq joints which
are small relative to the leJlllb of pipe sepnents) it may be concluded that resonant or near resonant behavior does not
occur for frequencies in the earthquake rallP. Hence Figs. 3-6, based on relatively large values of R., should not be
construed as representing typical earthquake behavior (see previous footnote).
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remaining peaks (occuring at flf - 4.13, 6.195, 8.26) are infinite. Thus the criteria, R. > y3 is
not sufficient to ensure that all peaks will be infinite. In order to understand this difference in
behavior, it is worthwhile, at this point, to examine the mathematical nature of the solution,
from which it is possible to establish ranges of frequencies where radiation damping can occur
in the system.

An understanding of the basic damping mechanism and resonant response is best obtained
by examining eqns (4) and (5) which define the displacements of points in the surrounding
medium. From these equations, it is observed that the displacement expressions contain terms
of the nature Hn(\) (h:'r) e- i"" and Hn(l)(k:'r) e-i"'l, n = 0 and 1, where h:' and k:' are originally
defined by eqns (8). In terms of the new parameters given by eqns (20H22), (32) and (35), h:'
and k:' are expressed respectively by

and

21T [ r2 ]1/2k* =- -_--(2m -1)2 .
m A <f./f)2

(37a)

(37b)

Thus, if r> (2m -I)f)[, h:' is real, while if r < (2m -1)f)[, h:' is imaginary. (Similar
conclusions exist for k:' upon replacing fp by f•• ).

In the case where h:' and k:' are real, the response is expressed in terms of Hankel
functions of real arguments. Such terms then represent outward propagating waves in which
energy is continuously propagated outwardly by the respective p. and S·waves. Thus, there
exists, due to the outward radiation, a damping mechanism, and the system experiences
radiation damping.

On the other hand, if the arguments of the Hankel functions are imaginary, the Hankel
functions, in effect, are transformed into K. Bessel functions according to the relationI8]

(38)

The response, expressed then in terms of K. funciions, no longer is represented by radiating
waves. Hence, no radiation of energy can take place and the system can experience no
radiation damping.

Since the above discussion is applicable to both the h:' and k:' terms which correspond
respectively to p. and S·waves, the following may be concluded:t

(a) If (2m -1)f)1s r, radiation damping will take place through both the p. and S·wave
mechanism.

(b) If (2m -l)lsIls r < (2m -l)f)!. radiation damping will take place only through the
S-wave mechanism.

(c) If r < (2m -1)f.l[, no radiation damping can take place.
Thus peaks which occur at values of r which satisfy conditions (a) or (b) above, are always

finite since they correspond to a damped resonance while if r satisfies condition (c) the peaks
will be infinite, describing an undamped resonant system.

Returning now to Fig. 5(d), for which IsIf = Y3, we note that the first peak occuring at
r - 1.83> Y3 does not satisfy condition (c) for m = 1 and hence the peak is necessarily finite.
On the other hand, the remaining three values of r at which peaks occur correspond to values
m = 2, 3 and 4 respectively and thus, satisfying condition (c) above, infinite peaks occur at these
values.

tThese conclusions are in accord with the results of [7) where it is shown that real roots of the frequency equation will
always be within the range j sf < f,·



Dynamic interaction of an embedded cylindrical rod 913

In conclusion, the behavior may be interpreted in p~ysical. terms. It is first noted that, upon
substituting eqns (4) and (13) in eqn (1), the applied force is represented by

F(t) =2Fo -;"1 ~ (2m - 1)17'1

L e 4" cos L .
mal

(39)

Hence we observe that for a steady state solution to exist, applied forces with frequency w
excite waves of wave length A, Al3, Al5 ... where A=2L. We recall too that for a system
governed by a prescribed set of parameters, eqns (20H23), waves of a given wave length Amay
propagate freely with certain discrete frequencies f according to the existing dispersion
relations of the system [7].

Now, if the frequency of the applied forces 1= w/217' coincides with the prescribed discrete
frequency of one of the excited waves of length A, Al3, Al5 . .. AI(2m -l)a ..., resonance will
occur with no damping. If, on the other hand, the parameters of the system are such that there
can be no coincidence between the applied frequency and the "natural frequency" of the
excited wave, then the response will be smooth or at most, a damped resonance will occur.
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